Re: rook.io


Bassam Tabbara <Bassam.Tabbara@...>
 

The most severe failure cases are ones that could lead to permanent data loss. There are a few, but first some background:

- Volumes are backed by virtual storage pools.
- Virtual pools are made up of a number of storage nodes that work together to ensure that data is stored reliably
- A pool can be configured to store replicas of data (typically 3x) or erasure coded chunks (different algorithms and factors are supported).
- when a storage node is lost the others help re-replicate the data (i.e. data maintenance).

Now the failure cases:

- if too many nodes in the same pool are lost within a short window of time you’ll suffer data loss, for example, all three nodes in a 3x replica are lost at the same time.
- if there are not enough resources to replicate/regenerate the data before more losses occur.

To guard against such failures, most systems (including Rook) do the following:

- storage nodes are spread across failure domains (different hosts, racks, zones etc.)
- prioritize resources for “data maintenance” over resources used for “normal" data operations.

In the context of running Rook in AWS, this means ensuring that the Rook storage pods are spread across the nodes in the cluster and across availability zones. Also ensuring that you’ve sized the machines and network to support data maintenance. Prioritization schemes also help, for example, SRV-IO is a popular way to do so without massive changes to the network.

Finally, this is a good example of why building a control plane that can automate such decisions/tradeoffs helps ensure success with storage.

On Jun 6, 2017, at 1:06 PM, Alexis Richardson <alexis@...> wrote:

What are the failure cases for this ?

On Tue, Jun 6, 2017 at 5:41 PM, Bassam Tabbara
<Bassam.Tabbara@...> wrote:
Alexis,

Thanks! We joined the Storage WG and will work with Ben on CSI and future
projects.

The use case was running Rook Block storage on-top of ephemeral/instance
storage on EC2 instances vs. using EBS storage. Rook would handle the
replication of data across instances and stripe across them for performance.
Pods in the cluster would see this like any other volume.

For Pod failover, the detach / detach cycle is much faster than EBS. One of
our users compared EBS to Rook [1] and showed that Rook volume failover
happened in less than minutes vs. up to an hour with EBS.

Also EBS volumes only support a single writer (ReadWriteOnce in K8S) which
makes them a poor candidate for hot failover scenarios underneath, say,
Postgres or MySql. With the work we’re doing on the Rook Volume Plugin [2]
we plan to support ReadWriteMany to support a hotter failover where the
app/service ontop can handle the fencing.

Finally, there are cost and performance tradeoffs for running on-top of
ephemeral/instance storage vs. EBS. For example, a lot of the instance
storage is unused in most deployments and has a high performance.

Happy to discuss in more detail.

Thanks!
Bassam

[1] https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgitter.im%2Frook%2Frook%3Fat%3D58baff6f872fc8ce62b6ee26&data=02%7C01%7CBassam.Tabbara%40quantum.com%7Cac58cc3d749e453fda4e08d4ad178f30%7C322a135f14fb4d72aede122272134ae0%7C1%7C0%7C636323764076275976&sdata=8dSWMXRMqtmPH5goZx4O%2BpVTesQEuS4cb21qgJmmTw0%3D&reserved=0
[2] https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fkubernetes%2Fpull%2F46843&data=02%7C01%7CBassam.Tabbara%40quantum.com%7Cac58cc3d749e453fda4e08d4ad178f30%7C322a135f14fb4d72aede122272134ae0%7C1%7C0%7C636323764076275976&sdata=UGWvqRpP8P0sanBnGygcfwIYiU7tvKobJ7s8JtiWlFw%3D&reserved=0


On Jun 6, 2017, at 9:03 AM, Alexis Richardson <alexis@...> wrote:

Bassam

It would be good for Rook team to join Storage WG, if you haven't done so
yet.

QQ: you said that k8s use cases that run on EBS have high failover
times & that you can improve this. I missed the details of that. Can
you say more please?

alexis

Join cncf-toc@lists.cncf.io to automatically receive all group messages.