Operator Definition


alexis richardson
 

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator? Or, "leverages the
orchestrator".

On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:

+1 for workload and for a concise definition like Devdatta proposed.
I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.

So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:

"An operator is software that manages routine procedures and lifecycle operations of workloads."

A Kubernetes operator could be defined with a bit more detail:

"A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."

- Tobi


On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:

+1 for workload. I think application will eventually have a definition we can all get behind, and it will be different.


On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:

After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.

The difference here seems to be: "how to run" vs "what to run".

---
Lei Zhang (Harry)

Alibaba Group

------------------Original Mail ------------------
Sender: <cncf-sig-app-delivery@...>
Send Date:Fri Nov 8 10:41:00 2019
Recipients: <cncf-sig-app-delivery@...>
CC: <cncf-sig-app-delivery@...>
Subject:Re: [cncf-sig-app-delivery] Operator Definition

I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.

For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:

"An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."


The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:

"A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."


This has a few benefits:

The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.


Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.


Li, Xiang
 

While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 



Gerred Dillon
 

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.


On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:


While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 



Li, Xiang
 

“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.


------------------------------------------------------------------
发件人:Gerred Dillon<hello@...>
日 期:2019年11月10日 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.


On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:


While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 




Chris Short <chris@...>
 

Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

Chris Short
He/Him/His


On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:
“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.


------------------------------------------------------------------
发件人:Gerred Dillon<hello@...>
日 期:2019年11月10日 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.


On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:


While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 




Erick Carty
 

From this current discussion to answer "What is an operator?", the following have been proposed with some edits; if there are others from SIG-Apps or SIG-Apps-Delivery, please feel free to add them...
  • An Operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex (stateful) (applications) workloads on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource and controller concepts but includes domain or application-specific knowledge to automate common tasks.
  • An Operator is a Kubernetes API extension to automate domain-specific workflow actions through declarative definitions.
  • An operator is a platform extension that creates, configures, and manages the lifecycle of workloads.
    • A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload.
  • An operator is software that manages routine procedures and lifecycle operations of workloads.
    • A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads.
I feel, ultimately, we're all trying to describe the same concepts, but from different angles:  a general (concise) operator definition that doesn't require K8s, and a framework specific to K8s that allows potential automation of workload operatives.  The OperatorHub provides a Capability Levels category that's trying to associate available the Operators with their specific use-case and set the expectations.  It seems that ultimately, we'll want to use an "Auto Pilot" operator type when available;  but there may be a need for customizations so perhaps a co-op play with Helm, Terraform, Ansible, etc. - the notion of "runbooks as code" seems to resonate with some - how would we describe the ability to self-heal closer/personalized to the workload, (perhaps for a separate discussion) what implications does it have on storage, DR, network, etc.

image.png
image.png
* Only 1 Operator today is classified as "Auto Pilot".

On Sun, Nov 10, 2019 at 8:06 AM Chris Short via Lists.Cncf.Io <chris=chrisshort.net@...> wrote:
Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

Chris Short
He/Him/His


On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:
“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.


------------------------------------------------------------------
发件人:Gerred Dillon<hello@...>
日 期:2019年11月10日 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.


On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:


While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 




Noel OConnor
 

"An Operator is an application-specific controller that extends the..."

Do we run the risk of confusing the concept of "controller" here.  K8s have controllers, Operators can have a collection of related controllers, I think we need to come up with a better term.

On Mon, Nov 11, 2019 at 9:52 AM Erick Carty <erickcarty@...> wrote:
From this current discussion to answer "What is an operator?", the following have been proposed with some edits; if there are others from SIG-Apps or SIG-Apps-Delivery, please feel free to add them...
  • An Operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex (stateful) (applications) workloads on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource and controller concepts but includes domain or application-specific knowledge to automate common tasks.
  • An Operator is a Kubernetes API extension to automate domain-specific workflow actions through declarative definitions.
  • An operator is a platform extension that creates, configures, and manages the lifecycle of workloads.
    • A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload.
  • An operator is software that manages routine procedures and lifecycle operations of workloads.
    • A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads.
I feel, ultimately, we're all trying to describe the same concepts, but from different angles:  a general (concise) operator definition that doesn't require K8s, and a framework specific to K8s that allows potential automation of workload operatives.  The OperatorHub provides a Capability Levels category that's trying to associate available the Operators with their specific use-case and set the expectations.  It seems that ultimately, we'll want to use an "Auto Pilot" operator type when available;  but there may be a need for customizations so perhaps a co-op play with Helm, Terraform, Ansible, etc. - the notion of "runbooks as code" seems to resonate with some - how would we describe the ability to self-heal closer/personalized to the workload, (perhaps for a separate discussion) what implications does it have on storage, DR, network, etc.

image.png
image.png
* Only 1 Operator today is classified as "Auto Pilot".

On Sun, Nov 10, 2019 at 8:06 AM Chris Short via Lists.Cncf.Io <chris=chrisshort.net@...> wrote:
Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

Chris Short
He/Him/His


On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:
“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.


------------------------------------------------------------------
发件人:Gerred Dillon<hello@...>
日 期:2019年11月10日 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.


On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:


While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...


------------------------------------------------------------------
发件人:alexis richardson<alexis@...>
日 期:2019年11月09日 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 题:Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 




Reitbauer, Alois
 

I think we need to start from the beginning and not jump to definition too early.

 

  • First we need to define which problems we want operators to solve.
  • Then we should define what they do to solve the problem.
  • The final step should then be to define how they do it.
  • Bonus: Describe how this can be implemented on other platforms.

 

Here is my initial take based on the discussion in this thread:

 

Which problem do we solve:

 

Platforms – like Kubernetes -  offer (low-level) mechanisms to install, run and modify workloads running on them. In order to define these workloads, detailed knowledge of the inner workings of the application – the complex workload to be installed – is required. Besides being complex this definition is also platform specific.  Operators abstract these low level concepts by domain specific concepts and can perform these actions based on a domain specific description.  This means somebody can perform tasks like

 

  • Install a three node Redis cluster
  • Upgrade cluster from version X to very Y
  • Uninstall cluster
  • Upgrade storage for cluster

 

Without a detailed understand which actions need to be triggered on the underlying runtime.

 

Beyond these basic operations, more complex tasks can be automated to keep a system healthy. While the above tasks are usually triggered by user, these more advanced tasks are handled automatically in the background.

 

What does an operator do:

 

This abstraction is possible by providing a domain specific configuration files which is passed to the application runtime. The operator then translates these concepts into actions that can be understood by the underlying platform. An operator does this by creating a platform configuration – also referred to as the desired state – and then triggering actions until the system is configured as desired. The operator then constantly checks the actual configuration and makes required adjustments – if for example health checks fails.

 

How is this done in Kubernetes:

 

Operators in Kubernetes are extensions to the Kubernetes API. They are usually stateful and configured using custom resource definitions (CRDs). An operator used a reconciliation loop to query the health and state of all platform workloads it is running and compares it to the desired state based on the domain specific configuration. If any changes are necessary the operator controller automatically triggers these changes. As the operator also provides an extension to the Kubernetes API end-users (operators) can also trigger domain-specific configuration changes which are then again translated into platform specific changes.

 

This hides the complexity of configuring deployments, persistent volume claims, etc. for applications from end-users.  Good implementations will also change their behavior based on specific environment characteristics – e.g. is a service mesh present or not – without requiring specific configuration from the end-user.

 

An end-user in this definition is everybody how did not build the software that is deployed.

 

Bonus: How can this be done on other platforms:

 

In an AWS environment an Operator can be defined using an S3 Bucket for the configuration and a Lambda function which triggers API commands based on configuration changes of the S3 bucket.

 

 

 

 

 

From: <cncf-sig-app-delivery@...> on behalf of Noel OConnor <noel.oconnor@...>
Date: Monday, 11. November 2019 at 18:58
To: Erick Carty <erickcarty@...>
Cc: "chris@..." <chris@...>, "Li, Xiang" <x.li@...>, "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

"An Operator is an application-specific controller that extends the..."

 

Do we run the risk of confusing the concept of "controller" here.  K8s have controllers, Operators can have a collection of related controllers, I think we need to come up with a better term.

 

On Mon, Nov 11, 2019 at 9:52 AM Erick Carty <erickcarty@...> wrote:

From this current discussion to answer "What is an operator?", the following have been proposed with some edits; if there are others from SIG-Apps or SIG-Apps-Delivery, please feel free to add them...

  • An Operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex (stateful) (applications) workloads on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource and controller concepts but includes domain or application-specific knowledge to automate common tasks.
  • An Operator is a Kubernetes API extension to automate domain-specific workflow actions through declarative definitions.
  • An operator is a platform extension that creates, configures, and manages the lifecycle of workloads.
    • A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload.
  • An operator is software that manages routine procedures and lifecycle operations of workloads.
    • A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads.

I feel, ultimately, we're all trying to describe the same concepts, but from different angles:  a general (concise) operator definition that doesn't require K8s, and a framework specific to K8s that allows potential automation of workload operatives.  The OperatorHub provides a Capability Levels category that's trying to associate available the Operators with their specific use-case and set the expectations.  It seems that ultimately, we'll want to use an "Auto Pilot" operator type when available;  but there may be a need for customizations so perhaps a co-op play with Helm, Terraform, Ansible, etc. - the notion of "runbooks as code" seems to resonate with some - how would we describe the ability to self-heal closer/personalized to the workload, (perhaps for a separate discussion) what implications does it have on storage, DR, network, etc.

 

* Only 1 Operator today is classified as "Auto Pilot".

 

On Sun, Nov 10, 2019 at 8:06 AM Chris Short via Lists.Cncf.Io <chris=chrisshort.net@...> wrote:

Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

 

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

 

Chris Short

He/Him/His

 

 

On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:

“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.

 

 

------------------------------------------------------------------
件人:Gerred Dillon<hello@...>
日 期:20191110 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 Re: [cncf-sig-app-delivery] Operator Definition

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

 

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

 

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

 

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

 

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

 

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.

 



On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:

While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

 

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

 

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...

 

 

------------------------------------------------------------------
件人:alexis richardson<alexis@...>
日 期:20191109 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> CC: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 

 

The contents of this e-mail are intended for the named addressee only. It contains information that may be confidential. Unless you are the named addressee or an authorized designee, you may not copy or use it, or disclose it to anyone else. If you received it in error please notify us immediately and then destroy it. Dynatrace Austria GmbH (registration number FN 91482h) is a company registered in Linz whose registered office is at 4040 Linz, Austria, Freistädterstraße 313


Matt Farina
 

The more I look at this the more I wonder if we need two things. A simple definition and a long form description. They will serve different audiences with different levels of detail.

I think we need to start from the beginning and not jump to definition too early.

 

  • First we need to define which problems we want operators to solve.
  • Then we should define what they do to solve the problem.
  • The final step should then be to define how they do it.
  • Bonus: Describe how this can be implemented on other platforms.

Operators have been in the wild for quite some time. We aren't solving for something new. I would hesitate to treat this as a place where we define problems and solutions. Instead, I would try to describe what is already happening. That may change over time and already has as we can see with the original definition talking about stateful apps and we now deal with stateless workloads as well.

The TOC kicked a task out to SIG App Delivery. We should try to complete it and get the results back to them. The SIGs are there to help the TOC. I would hope we have something completed by the end of December.

Can we pick this up in earnest next week, after the conference going on this week is out of the way?

- Matt Farina

On Mon, Nov 18, 2019, at 8:41 AM, Reitbauer, Alois wrote:

I think we need to start from the beginning and not jump to definition too early.

 

  • First we need to define which problems we want operators to solve.
  • Then we should define what they do to solve the problem.
  • The final step should then be to define how they do it.
  • Bonus: Describe how this can be implemented on other platforms.

 

Here is my initial take based on the discussion in this thread:

 

Which problem do we solve:

 

Platforms – like Kubernetes -  offer (low-level) mechanisms to install, run and modify workloads running on them. In order to define these workloads, detailed knowledge of the inner workings of the application – the complex workload to be installed – is required. Besides being complex this definition is also platform specific.  Operators abstract these low level concepts by domain specific concepts and can perform these actions based on a domain specific description.  This means somebody can perform tasks like

 

  • Install a three node Redis cluster
  • Upgrade cluster from version X to very Y
  • Uninstall cluster
  • Upgrade storage for cluster

 

Without a detailed understand which actions need to be triggered on the underlying runtime.

 

Beyond these basic operations, more complex tasks can be automated to keep a system healthy. While the above tasks are usually triggered by user, these more advanced tasks are handled automatically in the background.

 

What does an operator do:

 

This abstraction is possible by providing a domain specific configuration files which is passed to the application runtime. The operator then translates these concepts into actions that can be understood by the underlying platform. An operator does this by creating a platform configuration – also referred to as the desired state – and then triggering actions until the system is configured as desired. The operator then constantly checks the actual configuration and makes required adjustments – if for example health checks fails.

 

How is this done in Kubernetes:

 

Operators in Kubernetes are extensions to the Kubernetes API. They are usually stateful and configured using custom resource definitions (CRDs). An operator used a reconciliation loop to query the health and state of all platform workloads it is running and compares it to the desired state based on the domain specific configuration. If any changes are necessary the operator controller automatically triggers these changes. As the operator also provides an extension to the Kubernetes API end-users (operators) can also trigger domain-specific configuration changes which are then again translated into platform specific changes.

 

This hides the complexity of configuring deployments, persistent volume claims, etc. for applications from end-users.  Good implementations will also change their behavior based on specific environment characteristics – e.g. is a service mesh present or not – without requiring specific configuration from the end-user.

 

An end-user in this definition is everybody how did not build the software that is deployed.

 

Bonus: How can this be done on other platforms:

 

In an AWS environment an Operator can be defined using an S3 Bucket for the configuration and a Lambda function which triggers API commands based on configuration changes of the S3 bucket.

 

 

 

 

 

From: <cncf-sig-app-delivery@...> on behalf of Noel OConnor <noel.oconnor@...>
Date: Monday, 11. November 2019 at 18:58
To: Erick Carty <erickcarty@...>
Cc: "chris@..." <chris@...>, "Li, Xiang" <x.li@...>, "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

"An Operator is an application-specific controller that extends the..."

 

Do we run the risk of confusing the concept of "controller" here.  K8s have controllers, Operators can have a collection of related controllers, I think we need to come up with a better term.

 

On Mon, Nov 11, 2019 at 9:52 AM Erick Carty <erickcarty@...> wrote:

From this current discussion to answer "What is an operator?", the following have been proposed with some edits; if there are others from SIG-Apps or SIG-Apps-Delivery, please feel free to add them...

  • An Operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex (stateful) (applications) workloads on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource and controller concepts but includes domain or application-specific knowledge to automate common tasks.
  • An Operator is a Kubernetes API extension to automate domain-specific workflow actions through declarative definitions.
  • An operator is a platform extension that creates, configures, and manages the lifecycle of workloads.
    • A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload.
  • An operator is software that manages routine procedures and lifecycle operations of workloads.
    • A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads.

I feel, ultimately, we're all trying to describe the same concepts, but from different angles:  a general (concise) operator definition that doesn't require K8s, and a framework specific to K8s that allows potential automation of workload operatives.  The OperatorHub provides a Capability Levels category that's trying to associate available the Operators with their specific use-case and set the expectations.  It seems that ultimately, we'll want to use an "Auto Pilot" operator type when available;  but there may be a need for customizations so perhaps a co-op play with Helm, Terraform, Ansible, etc. - the notion of "runbooks as code" seems to resonate with some - how would we describe the ability to self-heal closer/personalized to the workload, (perhaps for a separate discussion) what implications does it have on storage, DR, network, etc.

 



* Only 1 Operator today is classified as "Auto Pilot".

 

On Sun, Nov 10, 2019 at 8:06 AM Chris Short via Lists.Cncf.Io <chris=chrisshort.net@...> wrote:

Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

 

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

 

Chris Short

He/Him/His

 

 

On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:

“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.

 

 


------------------------------------------------------------------
件人:Gerred Dillon<hello@...>
日 期:20191110 11:03:49
收件人:Xiang Li<x.li@...>
抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>
主 Re: [cncf-sig-app-delivery] Operator Definition


I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

 

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

 

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

 

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

 

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

 

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.

 




On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:

While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

 

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

 

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...

 

 


------------------------------------------------------------------
件人:alexis richardson<alexis@...>
日 期:20191109 21:30:08
收件人:Tobias Knaup<tobi@...>
抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>
主 Re: [cncf-sig-app-delivery] Operator Definition

"An operator is software that manages routine procedures and lifecycle
operations of workloads."

Isn't also the case that an operator *delegates some of this
responsibility* to the orchestrator?   Or, "leverages the
orchestrator".


On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:
>
> +1 for workload and for a concise definition like Devdatta proposed.
> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.
>
> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:
>
> "An operator is software that manages routine procedures and lifecycle operations of workloads."
>
> A Kubernetes operator could be defined with a bit more detail:
>
> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
>
> - Tobi
>
>
> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:
>>
>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.
>>
>>
>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:
>>>
>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.
>>>
>>> The difference here seems to be: "how to run" vs "what to run".
>>>
>>> ---
>>> Lei Zhang (Harry)
>>>
>>> Alibaba Group
>>>
>>> ------------------Original Mail ------------------
>>> Sender: <cncf-sig-app-delivery@...>
>>> Send Date:Fri Nov 8 10:41:00 2019
>>> Recipients: <cncf-sig-app-delivery@...>
>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition
>>>>
>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.
>>>>
>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:
>>>>
>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."
>>>>
>>>>
>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:
>>>>
>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."
>>>>
>>>>
>>>> This has a few benefits:
>>>>
>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.
>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.
>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.
>>>>
>>>>
>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.
>>>>
>> 


 


The contents of this e-mail are intended for the named addressee only. It contains information that may be confidential. Unless you are the named addressee or an authorized designee, you may not copy or use it, or disclose it to anyone else. If you received it in error please notify us immediately and then destroy it. Dynatrace Austria GmbH (registration number FN 91482h) is a company registered in Linz whose registered office is at 4040 Linz, Austria, Freistädterstraße 313

Attachments:
  • image001.png
  • image002.png


Troy Topnik
 

On Fri, Nov 8, 2019 at 04:08 PM, Tobias Knaup wrote:
"A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."
I like how concise this is!

I'm actually OK with the original definition Matt proposed. If your application/workload is neither stateful nor complex, why us an operator ?

TT


Reitbauer, Alois
 

If your application/workload is neither stateful nor complex, why us an operator ?

 

Because you want to hide the low-level details or because it needs domain specific configuration.

 

 

 

From: <cncf-sig-app-delivery@...> on behalf of Troy Topnik <troy.topnik@...>
Date: Monday, 18. November 2019 at 10:29
To: "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

On Fri, Nov 8, 2019 at 04:08 PM, Tobias Knaup wrote:

"A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."

I like how concise this is!

I'm actually OK with the original definition Matt proposed. If your application/workload is neither stateful nor complex, why us an operator ?

TT

The contents of this e-mail are intended for the named addressee only. It contains information that may be confidential. Unless you are the named addressee or an authorized designee, you may not copy or use it, or disclose it to anyone else. If you received it in error please notify us immediately and then destroy it. Dynatrace Austria GmbH (registration number FN 91482h) is a company registered in Linz whose registered office is at 4040 Linz, Austria, Freistädterstraße 313


Reitbauer, Alois
 

We will have an agenda items for this on the next call. Given there is so much discussion I assume this will take some time. However,  finishing this in the next two months sound reasonable.

 

I am in favor of assessing what is already used. This should not limit us in what we propose to be future use.

 

// Alois

 

From: <cncf-sig-app-delivery@...> on behalf of Matt Farina <matt@...>
Date: Monday, 18. November 2019 at 06:21
To: Alois Reitbauer <alois.reitbauer@...>, Noel OConnor <noel.oconnor@...>, Erick Carty <erickcarty@...>
Cc: Chris Short <chris@...>, "Li, Xiang" <x.li@...>, "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

The more I look at this the more I wonder if we need two things. A simple definition and a long form description. They will serve different audiences with different levels of detail.

 

I think we need to start from the beginning and not jump to definition too early.

 

  • First we need to define which problems we want operators to solve.
  • Then we should define what they do to solve the problem.
  • The final step should then be to define how they do it.
  • Bonus: Describe how this can be implemented on other platforms.

 

Operators have been in the wild for quite some time. We aren't solving for something new. I would hesitate to treat this as a place where we define problems and solutions. Instead, I would try to describe what is already happening. That may change over time and already has as we can see with the original definition talking about stateful apps and we now deal with stateless workloads as well.

 

The TOC kicked a task out to SIG App Delivery. We should try to complete it and get the results back to them. The SIGs are there to help the TOC. I would hope we have something completed by the end of December.

 

Can we pick this up in earnest next week, after the conference going on this week is out of the way?

 

- Matt Farina

 

On Mon, Nov 18, 2019, at 8:41 AM, Reitbauer, Alois wrote:

I think we need to start from the beginning and not jump to definition too early.

 

  • First we need to define which problems we want operators to solve.
  • Then we should define what they do to solve the problem.
  • The final step should then be to define how they do it.
  • Bonus: Describe how this can be implemented on other platforms.

 

Here is my initial take based on the discussion in this thread:

 

Which problem do we solve:

 

Platforms – like Kubernetes -  offer (low-level) mechanisms to install, run and modify workloads running on them. In order to define these workloads, detailed knowledge of the inner workings of the application – the complex workload to be installed – is required. Besides being complex this definition is also platform specific.  Operators abstract these low level concepts by domain specific concepts and can perform these actions based on a domain specific description.  This means somebody can perform tasks like

 

  • Install a three node Redis cluster
  • Upgrade cluster from version X to very Y
  • Uninstall cluster
  • Upgrade storage for cluster

 

Without a detailed understand which actions need to be triggered on the underlying runtime.

 

Beyond these basic operations, more complex tasks can be automated to keep a system healthy. While the above tasks are usually triggered by user, these more advanced tasks are handled automatically in the background.

 

What does an operator do:

 

This abstraction is possible by providing a domain specific configuration files which is passed to the application runtime. The operator then translates these concepts into actions that can be understood by the underlying platform. An operator does this by creating a platform configuration – also referred to as the desired state – and then triggering actions until the system is configured as desired. The operator then constantly checks the actual configuration and makes required adjustments – if for example health checks fails.

 

How is this done in Kubernetes:

 

Operators in Kubernetes are extensions to the Kubernetes API. They are usually stateful and configured using custom resource definitions (CRDs). An operator used a reconciliation loop to query the health and state of all platform workloads it is running and compares it to the desired state based on the domain specific configuration. If any changes are necessary the operator controller automatically triggers these changes. As the operator also provides an extension to the Kubernetes API end-users (operators) can also trigger domain-specific configuration changes which are then again translated into platform specific changes.

 

This hides the complexity of configuring deployments, persistent volume claims, etc. for applications from end-users.  Good implementations will also change their behavior based on specific environment characteristics – e.g. is a service mesh present or not – without requiring specific configuration from the end-user.

 

An end-user in this definition is everybody how did not build the software that is deployed.

 

Bonus: How can this be done on other platforms:

 

In an AWS environment an Operator can be defined using an S3 Bucket for the configuration and a Lambda function which triggers API commands based on configuration changes of the S3 bucket.

 

 

 

 

 

From: <cncf-sig-app-delivery@...> on behalf of Noel OConnor <noel.oconnor@...>
Date: Monday, 11. November 2019 at 18:58
To: Erick Carty <erickcarty@...>
Cc: "chris@..." <chris@...>, "Li, Xiang" <x.li@...>, "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

"An Operator is an application-specific controller that extends the..."

 

Do we run the risk of confusing the concept of "controller" here.  K8s have controllers, Operators can have a collection of related controllers, I think we need to come up with a better term.

 

On Mon, Nov 11, 2019 at 9:52 AM Erick Carty <erickcarty@...> wrote:

From this current discussion to answer "What is an operator?", the following have been proposed with some edits; if there are others from SIG-Apps or SIG-Apps-Delivery, please feel free to add them...

  • An Operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex (stateful) (applications) workloads on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource and controller concepts but includes domain or application-specific knowledge to automate common tasks.
  • An Operator is a Kubernetes API extension to automate domain-specific workflow actions through declarative definitions.
  • An operator is a platform extension that creates, configures, and manages the lifecycle of workloads.
    • A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload.
  • An operator is software that manages routine procedures and lifecycle operations of workloads.
    • A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads.

I feel, ultimately, we're all trying to describe the same concepts, but from different angles:  a general (concise) operator definition that doesn't require K8s, and a framework specific to K8s that allows potential automation of workload operatives.  The OperatorHub provides a Capability Levels category that's trying to associate available the Operators with their specific use-case and set the expectations.  It seems that ultimately, we'll want to use an "Auto Pilot" operator type when available;  but there may be a need for customizations so perhaps a co-op play with Helm, Terraform, Ansible, etc. - the notion of "runbooks as code" seems to resonate with some - how would we describe the ability to self-heal closer/personalized to the workload, (perhaps for a separate discussion) what implications does it have on storage, DR, network, etc.

 

* Only 1 Operator today is classified as "Auto Pilot".

 

On Sun, Nov 10, 2019 at 8:06 AM Chris Short via Lists.Cncf.Io <chris=chrisshort.net@...> wrote:

Easy and simple/simply are words to be avoided in definitions, especially in the K8s space. :-)

 

Thank you so much to Matt for driving this discussion. Is there a working definition at this point that incorporates this discussion into Matt's original definition? I feel that recap will help drive this towards done.

 

Chris Short

He/Him/His

 

 

On Sat, Nov 9, 2019 at 10:28 PM Li, Xiang <x.li@...> wrote:

“Easy” is relative. At least Kubernetes makes it easier than some other environments to achieve the defined model. 

 

But yes, managing the complex app is the hard part. No one says k8s can make that part very easy. Managing app is different than achieving the management model.

 

 

 

------------------------------------------------------------------

件人:Gerred Dillon<hello@...>

日 期:20191110 11:03:49

收件人:Xiang Li<x.li@...>

抄 送:cncf-sig-app-delivery<cncf-sig-app-delivery@...>; Tobias Knaup<tobi@...>; Zhang, Lei<lei.zhang@...>

主 Re: [cncf-sig-app-delivery] Operator Definition

 

I disagree with the last paragraph of this reply - or the characterization in how it applies to existing operators. Strimzi is a CNCF example where these points are made true — and Kubernetes offers a model but doesn’t necessarily make it easy.

 

That said, the definitions are in line with my understanding of an operator. I want to contribute perspective indirectly with the intent to help this conversation...

 

The concept of providing state in a declaratively, irregardless of implementation is a key tenet to how we model systems and implement it in Kubernetes. So far this community has defined APIs in terms of Kubernetes-style object models or resources, which we have collectively and silently termed as “declarative” for our use across projects. Maybe there’s something to be said in that, and taking a cue from Cloud Events, determining what we expect an operator to be from the resource model and applying it to implementations?

 

That’s not to say we should suddenly start writing a CRD, but we should start creating a well-specified model and extract the definition from that.

 

Reading through it, this sounds still very generic. I’d like to start talking with existing operators and end users to understand their views of how this model could advance the state of services they feel “need” operators and expand it to our pending definition.

 

I’m happy to own this data collection with the SIGs blessing and push it into the outstanding issue/PR.

 

 

 

 

On Nov 9, 2019, at 9:27 PM, Li, Xiang <x.li@...> wrote:

While we could extend Operator concept developed at CoreOS to non Kubernetes platforms, but there are a few implicit key points that we must preserve. Or we are defining something else.

 

1. Operator keeps the desired state of the managed workload. The API of an operator is declarative not imperative. 

 

2. Operator is reactive and mostly automatic. It follows the observe, diff, act pattern from Kubernetes generic controllers.

 

3. Operator embeds the domain knowledge for a specific workload operation into code. This makes an operator different from a controller. 

 

Kubernetes environment just makes all three easy. Yes, there are so called x-operator in Kube-world but they do not try to achieve the 3 key points. Most of them should be called installer or deployer instead I guess...

 

 

 

------------------------------------------------------------------

件人:alexis richardson<alexis@...>

日 期:20191109 21:30:08

收件人:Tobias Knaup<tobi@...>

抄 送:Zhang, Lei<lei.zhang@...>; <cncf-sig-app-delivery@...>

主 Re: [cncf-sig-app-delivery] Operator Definition

 

"An operator is software that manages routine procedures and lifecycle

operations of workloads."

 

Isn't also the case that an operator *delegates some of this

responsibility* to the orchestrator?   Or, "leverages the

orchestrator".

 

 

On Fri, Nov 8, 2019 at 10:42 PM Tobias Knaup <tobi@...> wrote:

> +1 for workload and for a concise definition like Devdatta proposed.

> I found that most people get it when I explain operators as "runbooks as code". Especially when I talk to folks that don't know advanced concept like CRDs yet.

> So based on what was said here earlier and the Wikipedia article on runbooks an operator could be defined as:

> "An operator is software that manages routine procedures and lifecycle operations of workloads."

> A Kubernetes operator could be defined with a bit more detail:

> "A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."

> - Tobi

> On Fri, Nov 8, 2019 at 12:09 PM alexis richardson <alexis@...> wrote:

>> 

>> +1 for workload.  I think application will eventually have a definition we can all get behind, and it will be different.

>> 

>> 

>> On Fri, 8 Nov 2019, 19:20 Zhang, Lei, <lei.zhang@...> wrote:

>>> 

>>> After reading thru the thread, I tend to agree "workload" reads more accurate than "application" in Operator Framework's case.

>>> 

>>> The difference here seems to be: "how to run" vs "what to run".

>>> 

>>> ---

>>> Lei Zhang (Harry)

>>> 

>>> Alibaba Group

>>> 

>>> ------------------Original Mail ------------------

>>> Sender: <cncf-sig-app-delivery@...>

>>> Send Date:Fri Nov 8 10:41:00 2019

>>> Recipients: <cncf-sig-app-delivery@...>

>>> Subject:Re: [cncf-sig-app-delivery] Operator Definition

>>>> 

>>>> I agree with Matt and Doug that the scope of the definition need not be specific to Kubernetes. Given this SIG is at the CNCF level, aren't we responsible for defining these things broadly across the industry for cloud native in general? We could create a general definition to state what an operator is, and then offer definitions specific to platforms that define how it works on said platform, or leave that up to those projects to define for themselves.

>>>> 

>>>> For example, the general definition of operator could be something along the lines of Devdatta's proposal or the first sentence of Matt's proposal without mentioning Kubernetes specifics:

>>>> 

>>>> "An operator is a platform extension that creates, configures, and manages the lifecycle of workloads."

>>>> 

>>>> 

>>>> The Kubernetes operator definition defines how the pattern works specifically on Kubernetes:

>>>> 

>>>> "A Kubernetes operator is an extension to the Kubernetes API that builds upon the basic Kubernetes resource and controller concepts but includes domain-specific knowledge to automate common tasks for a given workload."

>>>> 

>>>> 

>>>> This has a few benefits:

>>>> 

>>>> The general definition can be applied to systems where the pattern already exists using that system's specific constructs and terminology.

>>>> It should be easy enough to understand the general concept without getting into platform-specific details. "I have a Redis operator for platform X" gets the point across without getting into the details of platform X.

>>>> Platform-specific definitions can follow the general pattern in a way that is familiar and easy to understand for the platform's users. "I have a Redis operator for Kubernetes" denotes how the operator works specifically in Kubernetes, so you know exactly what this means in the context of Kubernetes, but even if you're not familiar with Kubernetes, you at least have an idea of what it means from the general definition.

>>>> 

>>>> 

>>>> Side note: Quinton mentioned earlier that the use of "application" here may be somewhat misleading. I tend to agree with that and so I used "workload" as a more general term.

>>>> 

>> 

 

 

 

 

The contents of this e-mail are intended for the named addressee only. It contains information that may be confidential. Unless you are the named addressee or an authorized designee, you may not copy or use it, or disclose it to anyone else. If you received it in error please notify us immediately and then destroy it. Dynatrace Austria GmbH (registration number FN 91482h) is a company registered in Linz whose registered office is at 4040 Linz, Austria, Freistädterstraße 313

 

Attachments:

  • image001.png
  • image002.png

 

The contents of this e-mail are intended for the named addressee only. It contains information that may be confidential. Unless you are the named addressee or an authorized designee, you may not copy or use it, or disclose it to anyone else. If you received it in error please notify us immediately and then destroy it. Dynatrace Austria GmbH (registration number FN 91482h) is a company registered in Linz whose registered office is at 4040 Linz, Austria, Freistädterstraße 313


Marco Voelz
 

Hey everyone,

 

not sure if you all have seen this, but I really liked this definition which contrasts operators with controllers: https://twitter.com/caffeinepresent/status/1196243905974390784?s=20

 

As Gerred is also in this thread, I'd imagine this is nothing new, just wanted to make sure it is seen/heard.

 

Warm regards

Marco

 

From: <cncf-sig-app-delivery@...> on behalf of Troy Topnik <troy.topnik@...>
Date: Monday, 18. November 2019 at 19:28
To: "cncf-sig-app-delivery@..." <cncf-sig-app-delivery@...>
Subject: Re: [cncf-sig-app-delivery] Operator Definition

 

On Fri, Nov 8, 2019 at 04:08 PM, Tobias Knaup wrote:

"A Kubernetes operator is a controller that manages routine procedures and lifecycle operations of workloads."

I like how concise this is!

I'm actually OK with the original definition Matt proposed. If your application/workload is neither stateful nor complex, why us an operator ?

TT